Diffie-Hellman key exchange is a method allows two parties that have no prior knowledge of each other to exchange a shared secret over a public (insecure) channel. This shared secret can then be used to derive a key for a symmetric cipher like AES (from high-level prospective, that's what happens when establishing a TLS connection).
Java supports Diffie-Hellman scheme via KeyAgreement class. Here is an example how Diffie-Hellman key exchange can be implemented with Java.
Diffie-Hellman scheme has two steps. In first step, we generate public and private values for Diffie-Hellman key exchange. The we need to send a public value to our partner. To do that, we just save public values in to a file. We also same a private value to a file, so then we can load it again.
In second step, we read a private value from a file. Then, we initialize KeyAgreement with the private value. Next, we read a public value generated by our partner. Finally, we complete key exchange with the public value, and generate a shared secret.
Here is how it can be done with Java:
And here is how it can be run:
#!/bin/bash mkdir -p classes # compile ${JAVA_HOME}/bin/javac -d classes src/security/keyexchange/DHKeyExchange.java # Bob initializes a key exchange on his side # public value is going to be saved to bob.public ${JAVA_HOME}/bin/java -cp classes security.keyexchange.DHKeyExchange bob init # Alice initializes a key exchange on her side # public value is going to be saved to alice.public ${JAVA_HOME}/bin/java -cp classes security.keyexchange.DHKeyExchange alice init # Bob reads the public value from Alice, finalizes key exchange, and gets a shared secret ${JAVA_HOME}/bin/java -cp classes security.keyexchange.DHKeyExchange bob complete alice # Alice reads the public value from Bob, finalizes key exchange, and gets a shared secret ${JAVA_HOME}/bin/java -cp classes security.keyexchange.DHKeyExchange alice complete bob
And finally, here is what the output looks like:
>>> bob: private X saved to bob.private >>> bob: public Y saved to bob.public: 00FA941A6BBDCE94440B9FB27A0615452520D4D0904142A23A505FD93925AA7DBC2B06830040C80E5427CF83BDDD508BE2035149F11D34785919C67497F269593F760F7C654AA948E9EAE050410DB196833AE95F9456488FD01B065D98144041CF7CBF05C77B2662212226188A9721A570F893A5C2BE2D89A2B2CB446AB555282DD47547D6E9F40A077440ACC33A5B6C945A84A956E4360FF34E7C0E6C54CDEED5489945BD6D9D58297DD72C239256704875A7560939C6105E2B85B35820AAE9A0603CD9EADFD6AF75BA4F4796DC074E0F92AEA5D99D7D777835C355BFB282229C597B70EA5754170DA3BA437882616064D7E65E9FB49F2BB54AE93454B45A46A6 >>> alice: private X saved to alice.private >>> alice: public Y saved to alice.public: 00A7779F9E667F965C51A023181886BB975EBB58268EA67774C1AB9684DE3C61E31A9DD55B704509D0F12EB753E6866AF6EEA96328C7A4AFB4B4676335C88689C2AF4616A044B030AB5AA1C17CDF949A95E36AB5E715D525F361657110DB88A52BE3DC977F692A1EECB23FB23213FA447B4C997AB651950BD1820769B72B587286F88C70675E2E113E95609F077915073CD895253019D47D45DF563B8C9CF107A8ADD343D015ECFEE96B64760F15A8E46DD2D00C961460175C19CB44DE063F57264F3B8B73E832AAA44EDBA9DB95D955066C7E3B44C8497D271F050C258033B364264987ACD7C72AEF59F04F0B6E616F10781FC9261DD94336253E60A195CF929B >>> shared secret: 84464E64007F62CA9E2A458BD9A82E25554620D80ECFADA7FCE9641DD6EA0DF4F26E9E93D7D39D78A3FE1F971B699B5A9AFCB4E8E8B6E24B6E57E24B3639C11F8C8B82B6B93BAA9F370DF530D0D903F85CF2331E270291E9631D96DAF47EC5DAEC7A8EEC98AEA233B162F693BECB2ACBFB6994EFCF4036D57847E6387F86EBC9A9FBCA9F8A88F2FA23414BD23F4CC1ACDC27B1EBA14BF6912AAA1D4C02BC81E243F96B8F18B1DB98554ADFA03638242C553215F41A66635A003A0E0B01A0DB8EBC64D1661558EB128C5283B3DF6B0144CEF3D55371F3479978083E5B99DB3D7F9F5E42EDF62784A3490068C489081EEA8CB7F251C5CE56BAAD688A2623B077AC >>> shared secret: 84464E64007F62CA9E2A458BD9A82E25554620D80ECFADA7FCE9641DD6EA0DF4F26E9E93D7D39D78A3FE1F971B699B5A9AFCB4E8E8B6E24B6E57E24B3639C11F8C8B82B6B93BAA9F370DF530D0D903F85CF2331E270291E9631D96DAF47EC5DAEC7A8EEC98AEA233B162F693BECB2ACBFB6994EFCF4036D57847E6387F86EBC9A9FBCA9F8A88F2FA23414BD23F4CC1ACDC27B1EBA14BF6912AAA1D4C02BC81E243F96B8F18B1DB98554ADFA03638242C553215F41A66635A003A0E0B01A0DB8EBC64D1661558EB128C5283B3DF6B0144CEF3D55371F3479978083E5B99DB3D7F9F5E42EDF62784A3490068C489081EEA8CB7F251C5CE56BAAD688A2623B077AC
You may notice that both Bob and Alice got the same shared secret.
By the way, here is a great explanation of the idea of Diffie-Hellman key exchange algorithm without math. You can even show it to your kids.
https://www.youtube.com/watch?v=YEBfamv-_do&feature=youtu.be&t=138
Enjoy!